ELECHOUSE_CC1101 Library Instruction

Interface Defination

VCC: 3.3v, not more than 3. 6v

GND: Ground

SCLK: Clock, connecting with SCK of Arduino spi

SI: Serial data input, connecting with MOSI of Arduino
SO: serial data output, connecting with MISO of Arduino
CSN: enable, connecting with SS of Arduino

GDOO: output, as a symbol of sending or receiving data (refer to the register configuration of
CC1101 datasheet). It is set to 1 while data packets start sending or receiving, and return to 0
while data sending or receiving is finished. Connected with Arduino digital pin 2(Defined in
ELECHOUSE CC1101.h) If you need to change it, modify the macro definition in
ELECHOUSE_CC1101.h.

® (GDO2: serial clock output (refer to register configuration of CC1101 datasheet), connecting
with the Arduino digital pin 9 (Defined in ELECHOUSE CC1101.h)

Function

Copy ELECHOUSE CC1101 under \ libraries directory of IDE. Functions used to send or receive
data as follows:

> void Init (void);

> void SendData (byte * txBuffer, byte size);

> void SetReceive (void);

» byte CheckReceiveFlag (void);

> byte ReceiveData (byte * rxBuffer);

1. void Init (void);

Initialize the CC1101module, which should be called in the setup ();
void setup ()

{
ELECHOUSE_CC1101.Init ();

}

2. void SendData (byte * txBuffer, byte size);

Send data through CC1101 module. txBuffer array is the data, and size is the number of bytes to be
sent. Pay attention that size should not be more than 61.

void loop ()

{
ELECHOUSE_CC1101.SendData (TX_buffer, size);

}
3. void SetReceive (void);

Set CC1101 module to state of expecting receiving data. It should be called in the setup (). After

receiving a packet of data, you need to call this function again if you want to receive more data.
Call in the form of ELECHOUSE_CC1101.SetReceive ();

4. byte CheckReceiveFlag (void);

Check whether data is received. This function is usually used if receiving data in the query mode
(Another mode is interupt). Using this function, GDOO connected with digital pin (default Pin2)
by modifying the macro definition in ELECHOUSE_CC1101.h. It is not used if receiving data in
interrupt mode, while GDOO connects with an external interrupt pin.

if (ELECHOUSE_CC1101.CheckReceiveFlag ()

{
size = ELECHOUSE_CC1101.ReceiveData (RX_buffer);

ELECHOUSE_CC1101.SetReceive ();
}

5. byte ReceiveData (byte * rxBuffer);

Receive the data saved to rxBuffer, and return the number of bytes received. The maximum is 61
bytes.

{
size = ELECHOUSE_CC1101.ReceiveData (RX_buffer);

ELECHOUSE_CC1101.SetReceive ();
}

Example code:

1. Send 0-60

Include <ELECHOUSE_CC1101.h>
Define size 61

byte TX_buffer [size] = {0};
byte i;

void setup ()
{
Serial.begin (9600);
ELECHOUSE_CC1101.Init ();
for (i=0; i <size; i+ +)
{
TX_buffer [i] = ;
}
}

void loop ()

{
ELECHOUSE_CC1101.SendData (TX_buffer, size);
delay (1);

}

2. Receive data in query mode and display in the Serial Monitor

Include <ELECHOUSE_CC1101.h>

void setup ()

{
Serial.begin (9600);
ELECHOUSE_CC1101.Init ();
ELECHOUSE_CC1101.SetReceive ();

}

byte RX_buffer [61] = {0};
byte size, i, flag;

void loop ()
{
if (ELECHOUSE_CC1101.CheckReceiveFlag ())
{
size = ELECHOUSE_CC1101.ReceiveData (RX_buffer);
for (i=0; i <size;i++)
{
Serial.print (RX_buffer [i], DEC);
Serial.print (", BYTE);
}

Serial.printin (");

ELECHOUSE_CC1101.SetReceive ();

3. Receive data in interupt mode and display in the Serial Monitor
Include <ELECHOUSE_CC1101.h>

void setup ()
{
Serial.begin (9600);
ELECHOUSE_CC1101.Init ();
ELECHOUSE_CC1101.SetReceive ();
attachinterrupt (0, ELECHOUSE_CC1101_RevData, FALLING);

}

byte RX_buffer [61] = {0};
byte size, i, flag;

void loop ()
{

while (1);
}

void ELECHOUSE_CC1101_RevData ()
{
size = ELECHOUSE_CC1101.ReceiveData (RX_buffer);
for (i=0;i<size; i+ +)
{
Serial.print (RX_buffer [i], DEC);
Serial.print (", BYTE);

Serial.printin (");
ELECHOUSE_CC1101.SetReceive ();

