SIGN IN | REGISTERSign in to get more opportunities
3D PrintingPopularWide range of 3D printers and filaments!
3D PrintersHot
Filaments
Resins
Spare Parts & Upgrades
Accessories & Tools
3D Scanners
Laser Engravers
3D Pen
RoboticsTOP
Arduino
Raspberry Pi
micro:bit
Sensors
Breakout Boards
Development Tools
Communication
STEM
Displays
Wearables
Electronics
Transistor-Mosfet-Triac
Integrated Circuits
Bridge Rectifiers
Buzzer - Speakers
Fuses
Prototyping Boards
Relays
Resistors
Optoelectronics
Diodes
Mechanical Parts
Servo / Motors
Linear Motion
Build Parts
Bolts / Nuts
Pneumatic Components
Couplers
Pulleys and Belts
Actobotics
Ball Bearings
Collars/Hubs
Hardware
Project Boxes
Cooling
Power Supplies
Cables
Batteries
Wires
Switches
Terminals
Connectors
IC Sockets
Tools
Soldering Equipment
Multimeters
Hand Tools
Portable Measuring Devices
Electric Tools
Laboratory Equipment
Heatshrink
Chemical
Organization and Storage
Panel Meters
STEMEducation
Level
Platform
per Brand
BrandsAll brandsFull list of all brands in the store. Browse all brands
Promotions
Brands
Newest
On sale
+302118004320 Mon-Fri 9:30-17:30
Email [email protected]
Address
Free shipping for orders over 85€ and up to 2 kg parcels.
For orders under 85€ the shipping costs start from 2.70€.
Wide range of payment methods: Cash on delivery, Debit/Credit card, Iris, PayPal
Payments | Shipping options
Teensy 4.1 features the fastest microcontroller and an expanded set of powerful peripherals in a 2.4 by 0.7 inch form factor.
Teensy 4.0 can be programmed using the Arduino IDE with Teensyduino add-on.
Technical Specifications Compared to Teensy 4.0
Teensy 4.1 & 4.0 use the same IMXRT1062, so most technical specifications are the same.
Please refer to the Teensy 4.0 page for common specifications and features.
Ethernet
To use the Ethernet port, a magjack and capacitor need to be connected.
This is currently available only as a DIY project using this OSH Park Shared Circuit Board.
Memory Expansion
The bottom side of Teensy 4.1 has locations to solder 2 memory chips.
The smaller location is meant for a PSRAM chip. The larger location is intended for flash memory.
Pinouts
Teensy 4.1 is designed to bring all general purpose I/O pins to breadboard friendly pads on the outside edges
USB Host
Teensy 4.1's USB Host port allow you to connect USB devices, like keyboards and MIDI musical instruments. A 5 pin header and a USB Host cable are needed to be able to plug in a USB device.
USB hubs may be used if more than 1 device is needed. See the USBHost_t36 examples for details.
Cortex-M7 Processor Details
ARM Cortex-M7 brings many powerful CPU features to a true real-time microcontroller platform.
Cortex-M7 is a dual-issue superscaler processor, meaning M7 can execute 2 instructions per clock cycle, at 600 MHz! Of course, executing 2 simultaneously depends upon the compiler ordering instructions and registers. Initial benchmarks have shown C++ code compiled by Arduino tends to achieve 2 instructions about 40% to 50% of the time while performing numerically intensive work using integers and pointers.
Cortex-M7 is the first ARM microcontroller to use branch prediction. On M4, loops and other code which much branch take 3 clock cycles. With M7, after a loop has executed a few times, the branch prediction removes that overhead, allowing the branch instruction to run in only a single clock cycle.
Tightly Coupled Memory is a special feature which allows Cortex-M7 fast single cycle access to memory using a pair of 64 bit wide buses. The ITCM bus provides a 64 bit path to fetch instructions. The DTCM bus is actually a pair of 32 bit paths, allowing M7 to perform up to 2 separate memory accesses in the same cycle. These extremely high speed buses are separate from M7's main AXI bus, which accesses other memory and peripherals. 512K of memory can be accessed as tightly coupled memory. Teensyduino automatically allocates your Arduino sketch code into ITCM and all non-malloc memory use to the fast DTCM, unless you add extra keywords to override the optimized default.
Memory not accessed on the tightly coupled buses is optimized for DMA access by peripherals. Because the bulk of M7's memory access is done on the 2 tightly coupled buses, powerful DMA-based peripherals have excellent access to the non-TCM memory for highly efficient I/O.
Teensy 4.1's Cortex-M7 processor includes a floating point unit (FPU) which supports both 64 bit "double" and 32 bit "float". With M4's FPU on Teensy 3.5 & 36, and also Atmel SAMD51 chips, only 32 bit float is hardware accelerated. Any use of double, double functions like log(), sin(), cos() means slow software implemented math. Teensy 4.0 executes all of these with FPU hardware.
Power Consumption & Management
When running at 600 MHz, Teensy 4.1 consumes approximately 100 mA current.
Teensy 4.1 provides support for dynamic clock scaling. Unlike traditional microcontrollers, where changing the clock speed causes wrong baud rates and other issues, Teensy 4.1 hardware and Teensyduino's software support for Arduino timing functions are designed to allow dynamically speed changes. Serial baud rates, audio streaming sample rates, and Arduino functions like delay() and millis(), and Teensyduino's extensions like IntervalTimer and elapsedMillis, continue to work properly while the CPU changes speed.
Teensy 4.1 also provides a power shut off feature. By connecting a pushbutton to the On/Off pin, the 3.3V power supply can be completely disabled by holding the button for 5 seconds, and turned back on by a brief button press. If a coin cell is connected to VBAT, Teensy 4.1's RTC also continues to keep track of date & time while the power is off.
Teensy 4.1 also can also be overclocked, well beyond 600 MHz!